Sanierung des Verwaltungsgebäudes der Druckerei ENGELHARDT & BAUER in Karlsruhe

Abschlussbericht, Juni 2009
Förderung durch: BMWi, Forschungsvorhaben 0329750Y
Zuwendungsempfänger: Fachgebiet Bauphysik und Technischer Ausbau Universität Karlsruhe (TH)
Fachgebietsleitung: Prof. Andreas Wagner
Bearbeitung: Prof. Andreas Wagner, M.Sc. Behrooz Bagherian
Inhaltsverzeichnis

AUSGANGSLAGE UND RAHMENBEDINGUNGEN DES PROJEKTES ... 4
FÖRDERKONZEPT EnOB .. 4
PROJEKTBETEILIGTE .. 5

GEBÄUDEBESCHREIBUNG UND SANIERUNGSKONZEPT .. 7
DAS GEBÄUDE .. 7
HINTERGRUND DER SANIERUNG ... 10
REALISIERTES SANIERUNGSKONZEPT ... 12
GEBÄUDEHÜLLE .. 12
HEIZWÄRMEBEREITSTELLUNG ... 15
PROZESSABWÄRME .. 16
KÜHLKONZEPT .. 17
AKTIVIERUNG DER THERMISCHEN SPEICHERMASSE .. 17
OBERFLÄCHENNAHE GEOTHERMIE ... 19
FREIE NACHTLÜFTUNG ... 20
LÜFTUNGSKONZEPT ... 20

MONITORING .. 23
MESSKONZEPT .. 24
DATENERFASSUNG UND -VERARBEITUNG .. 26
DATENAUSFÄLLE ... 27

ERGEBNISSE DES MONITORINGS ... 31
GESAMTENERGIEKENNWerte .. 31
SPEZIFISCHER ENDENERGIEVERBRAUCH ... 31
SPEZIFISCHER PRIMÄRENERGIEVERBRAUCH ... 33
HEIZUNG ... 36
EINFLUSS DES KLIMAS AUF DIE HEIZWÄRME .. 38
KÜHLUNG ... 41
LÜFTUNG ... 45
BELEUCHTUNG ... 48
NUTZERZUFRIEDENHEIT UND THERMISCHER KOMFORT ... 51
ERGEBNISSE DER NUTZERBEFRAGUNG .. 52

FAZIT UND AUSBLICK ... 59
AUSGANGSLAGE UND RAHMENBEDINGUNGEN DES PROJEKTES

Abbildung 1: (Links) Anteile am Endenergieverbrauch nach Anwendungsbereichen für das Jahr 2006 in Deutschland. (Rechts) Anteil fossiler Energieträger (Gas, Öl, Kohle) zur Erzeugung der Raumwärme für das Jahr 2006 in Deutschland. [BMWi, fbta]

Bis zum Jahr 2020 soll sich in Deutschland die Energieproduktivität gegenüber 1990 verdoppeln. Dieses Ziel soll vorrangig durch die Bereitstellung von Energiedienstleistungen und Energieeffizienzmaßnahmen aus der Privatwirtschaft, aber auch durch staatliche Maßnahmen erreicht werden [BMWi].

Das hierzu im Jahr 2006 in Kraft getretene 5. Energieforschungsprogramm "Innovation und neue Energietechnologien" bildet u. a. die Grundlage des Förderkonzepts „Energie-optimiertes Bauen - EnOB“.

Förderkonzept EnOB

Das Förderkonzept EnOB gliedert sich in die Bereiche "Forschung und Entwicklung", in dessen Rahmen verschiedene Schwerpunktthemen gefördert werden, und "Demonstration und messtechnische Evaluierung innovativer Konzepte“. Letzterer (EnOB-Demo) beinhaltet die wissenschaftliche Begleitung von Demonstrationsgebäuden und unterteilt sich in Neubau (EnBau) und Bestand (EnSan). In Abbildung 2 wird diese Differenzierung schematisch dargestellt.
Für die Gebäudesubstanz fordert das Energieforschungsprogramm u. a. eine „grundlegende Verbesserung der Möglichkeiten einer konsequenten und nachhaltigen energetischen Sanierung“. Hieraus leiten sich die energetischen Mindestanforderungen für Nichtwohnungsbauten wie folgt ab:

1. Im Nichtwohnungsbau ist der Grenzwert für den Primärenergiebedarf von Neubauten der EnEV 2006 in Verbindung mit der DIN 18599 mindestens um 30% zu unterschreiten.
2. Weiterhin besteht eine zusätzliche Anforderung an den Wärmeschutz der Gebäudehülle in der Form, dass der mittlere U-Wert (Wärmedurchgangskoeffizient) einen bestimmten Grenzwert nicht überschreiten darf.

Projektbeteiligte

Im Unterauftrag des fbta war das Fraunhofer ISE verantwortlich für Auswertungen zum thermischen Komfort an den Arbeitsplätzen sowie für Detailauswertungen zur Effizienz der das innovative Energiekonzept bestimmenden gebäudetechnischen Anlagen. Die Ergebnisse der Arbeiten des Fraunhofer ISE sind in einem separaten Bericht zusammengefasst, der Teil der Gesamtberichterstattung ist.

In einem weiteren Unterauftrag verpflichtete sich das Unternehmen E&B zur aktiven Mitarbeit in dem Projekt, insbesondere zur Mitarbeit bei der Umsetzung von messtechnischen Maßnahmen für das Monitoring sowie zur Umsetzung der von den wissenschaftlichen Einrichtungen vorgeschlagenen Maßnahmen zur energetischen Betriebsoptimierung.
GEBÄUDEBESCHREIBUNG UND SANIERUNGSKONZEPT

Das Gebäude

Die Druckerei bestand ursprünglich aus einem dreigeschoßigen Bürogebäude und einem damit verbundenen, ebenfalls für Bürozwecke genutzten Flachbau, an den wiederum die Produktionshallen anschließen. Durch die Idee, für die notwendige Erweiterung den Flachbau aufzustocken, konzentrierte sich die Baumaßnahme nur auf diesen Gebäudeteil.

Abbildung 3: Zwei Ansichten des Bürogebäudes der Druckerei Engelhardt & Bauer vor der Sanierung [E&B]

Die Gesamtfläche des Gebäudes beträgt ca. 5000 m². Davon sind rund 40% Produktions- und ca. 60% Verwaltungsflächen. Der Anteil des sanierten sowie erweiterten Flachbaus an der Gesamtfläche beträgt 29%. Bei E&B sind rund 120 Mitarbeiter in 2 Schichten beschäftigt. Abbildung 5 illustriert die Volumen- sowie Flächenverhältnisse der jeweiligen Gebäudebereiche.
Der sanierte Bereich (Flachbau) ist im 1. Obergeschoss thermisch mit dem 3-geschossigen Verwaltungsgebäude gekoppelt, so dass für die weiteren Betrachtungen die Definition einer Systemgrenze notwendig ist. Diese Definition ist durch rot markierte Bereiche in Abbildung 6 veranschaulicht. Der Flachbau selbst kann in Sozial- und Büro-Bereiche unterteilt werden.
Abbildung 6: (Oben) Erdgeschoss- und (unten) Obergeschoss-Grundriss der Verwaltungsgebäude der Druckerei E&B. Die rot markierten Bereiche veranschaulichen die betrachtete Systemgrenze des sanierten Flachbaus. [fbta]

Hintergrund der Sanierung

Im Jahr 2005 erstellte das Fraunhofer-Institut für Solare Energiesysteme (ISE) eine Energieanalyse nach VDI 3922 für das Verwaltungsgebäude Engelhardt & Bauer. Der durch

Im Winter wurde über Zugerscheinungen berichtet, da die Fenster zur Sicherstellung eines Mindestluftwechsels geöffnet werden mussten. Damit einhergehend traten im Großraum sehr unterschiedliche Raumtemperaturen auf.

Realisiertes Sanierungskonzept

Abbildung 8: Der angestrebte spezifische Jahresheizenergiebedarf (Endenergie) für den sanierten Flachbau der Druckerei Engelhart & Bauer [ISE]

Im Rahmen der Sanierung wurde das Gebäude komplett entkernt, d.h. auch die abgehängte Decke entfernt, und die bestehende Fassade wurde abgerissen. Somit entstand ein höherer und damit besser belichteter Raum und die thermische Masse der Decke wurde aktivierbar. Für die Aufstockung wurde auf den Rohbau des Flachbaus eine Stahlkonstruktion in Leichtbauweise gesetzt. Damit konnte das (neue) Gebäude insgesamt großzügig nach außen geöffnet werden, was eine bessere Tageslichtversorgung und freie Gebäudelüftung ermöglichte (Abbildung 9). Der verbesserte Baustandard sollte zudem lokale Unbehaglichkeiten durch kalte / warme Oberflächen und Zugluft deutlich reduzieren und war die Grundvoraussetzung für den Einsatz von Flächenheiz- und -kühlssystemen. Eine energieeffiziente Grundlüftung sollte die Luftqualität nachhaltig verbessern. In den Großraumbüros wurde die Raumakustik durch die veränderte Raumgeometrie und den Einsatz von Deckensegeln verbessert. Insgesamt war es das Ziel, die Arbeitsplatzqualität bei sehr stark reduziertem Energieeinsatz deutlich zu verbessern.

Gebäudehülle

Die Dichtheit der Gebäudehülle sowie eine exzellente Wärmeschutzmaßnahme der opaken und transparenten Außenbauteile sind die Grundvoraussetzungen für die thermische Behaglichkeit eines energieeffizienten Gebäudes. Für den erweiterten Flachbau wurde zunächst ein hochwertiger, am Passivhaus-Standard orientierter baulicher Wärmeschutz angestrebt.

Der mittlere U-Wert der Gebäudehülle bei der Druckerei Engelhart & Bauer liegt bei 0,54 W/(m²K). Dieser Wärmeschutzstandard wurde mit heute üblichen Maßnahmen er-
reicht. Abbildung 10 zeigt eine Zusammenfassung der verwendeten Materialien und Bau-
teile sowie die wärmeschutztechnischen Kennwerte des sanierten Gebäudes.

Abbildung 9: Sanierter und erweiterter Zustand des Verwaltungsgebäudes der Druckerei Engel-
hardt & Bauer in Karlsruhe. Die rot markierten Linien sind die im Rahmen des Energie-
Monitorings betrachteten Systemgrenzen des erweiterten Flachbaus. [E&B]

Zum Vergleich werden in Abbildung 11 die U-Werte der Hüllfläche bzw. der Wärme
übertragenden Umfassungsfläche des Gebäudes von Engelhardt & Bauer den U-Werten
von zwei Demonstrationsgebäuden des Förderprogramms EnBau in Passivhausbauweise
gegenübergestellt.

Trotz guter Wärmeschutzmaßnahmen bei der Sanierung des E&B-Gebäudes wird der
Passivhaus-Standard nur bei den Sandwich-Elementen im Dach erreicht. Für die Fenster
waren lediglich Zweifach-Wärmeschutzverglasungen gewählt. Aus ökonomischen
Gründen konnten die geplanten Dämmstandards bei der Umsetzung bei der Sanierung
icht durchgesetzt werden.

Ein wesentlicher Bestandteil des Energiekonzepts waren hochwirksame Sonnenschutz-
maßnahmen, um Kühllasten und Blendungseffekten infolge der solaren Einstrahlung ent-
gegenzuwirken. An der Süd- und West-Fassade des Gebäudes wurden zweigeteilte exter-
ne Lamellenjalousien eingesetzt, die eine Lichtlenkung im Oberlichtbereich, getrennt
vom Fensterbereich, aufgrund der Lamellenstellung ermöglichen (Abbildung 12). Der g-
Wert des gesamten Fassadenaufbaus beträgt 55%.
Abbildung 10: Zusammenfassung der verwendeten Materialien und Bauteile des sanierten Anbaus sowie ihre wärmeschutztechnischen Kennwerte [E&B]
werden bislang über den vorhandenen Gaskessel (250 kW Nennwärmeleistung, Baujahr 1993) versorgt (siehe Abbildung 13). Der Kessel schafft darüber hinaus Redundanz für den Fall, dass die Druckmaschinen außer Betrieb sind, bzw. kann zur Deckung von Spitzenlasten eingesetzt werden. Die Kesselanlage soll in einem nächsten Sanierungsabschnitt durch eine Wärmepumpe ersetzt werden, um das o. g. Emissionsziel umzusetzen.

Abbildung 13: Schema der Heizungstechnik im Verwaltungsgebäude von E&B [ISE]

Prozessabwärme

Im ursprünglichen Energiekonzept für die Druckerei Engelhardt & Bauer war geplant, die komplette Heizung über die vorhandene Abwärme zu betreiben. Wegen des erhöhten Installationsaufwandes wurde letztendlich aber nur die Anbindung an die Fußbodenheizung im Erdgeschoß realisiert (s. o.). Dazu wurde im Produktionsbereich ein Wärmetauscher mit einer Leistung von 60 kW eingebaut (Abbildung 14), der Wärme auf einem Temperaturniveau zwischen 30 bis 35 °C liefert. Die Rücklauftemperatur der Fußbodenheizung sollte sich dafür auf einem Niveau von 25 °C befinden.
Kühlkonzept

Aktivierung der thermischen Speichermasse

Im Erdgeschoss stand nach der Entkernung die Betondecke zur Verfügung. In diese wurden Kapillarrohrmatten eingelegt, die mit über Erdsonden gekühltem Wasser durchströmt werden können und so aktiv die Wärme abbauen. Da das Obergeschoss in Leichtbauweise realisiert wurde, musste dort "künstlich" die Wärmespeicherkapazität erhöht werden. Dazu wurden Deckenkühlpaneelen eingesetzt, die mit Kapillarrohrmatten und Latentwärmespeichermaterial (PCM) ausgerüstet wurden. Das PCM kann durch einen Phasenwechsel den Temperaturanstieg abfangen und entkoppelt Wärmezu- und -abfuhr zeitlich. In den Nachtstunden werden die Paneele über den mit den Erdsonden verbundenen Wasserkreislauf entladen.

Die im Erdgeschoss eingesetzten Kunststoff-Kapillarrohrmatten aus Polypropylen zeichnen sich gegenüber herkömmlichen Deckenkühlelementen dadurch aus, dass sie nicht zwingend eine abgehängte Deckenkonstruktion benötigen. Aufgrund ihres geringen Außendurchmessers (4,3 mm), ihres geringen Gewichts sowie ihrer Flexibilität lassen sie sich – auch nachträglich – direkt an die Rohbetondecke anputzen (Abbildung 15). Deshalb sind sie für Sanierungsmaßnahmen sehr gut geeignet. Insgesamt wurden im Erdgeschoss des E&B-Flachbaus 240 m² der Betondecke mit dem System ausgerüstet; die Kühlleistung beträgt 12 kW.

Die Abfuhr der in den Kühldeckensegeln gespeicherten Wärme an das Erdreich erfolgt über wasserdurchströmte Kapillarrohrmatten, die sich auf der Rückseite der zum Raum hin orientierten PCM-Schicht befinden (siehe Abbildung 16). Insgesamt sind im Obergeschoss ca. 260 m² Deckensegel installiert; die Kühlleistung beträgt 21 kW.
Oberflächennahe Geothermie

Abbildung 17: (Links) Erdsonden-Bohrungen entlang der West-Fassade und (rechts) Erdsonden mit Anschlussleitungen entlang der Nord-Fassade [E&B]

Um das Erdsondenfeld aus Kostengründen möglichst klein zu halten, wurde eine zeitlich versetzte Betriebsweise der Kühlkreisläufe für Erd- und Obergeschoss geplant. Die Kühlung erfolgt nach folgendem Prinzip:

Die aus den 12 Erdsonden bereitgestellte Wassermenge wird mittels der Pumpe in die Deckenkühlsegel transportiert. Die Temperaturen der 3 Kühlkreisläufe im Obergeschoss werden über einen Raumfühler erfasst und dienen zur Steuerung eines Ventils. Nach Er-
reichen einer voreingestellten Temperatur wird auf die Kühlung der Decken-Kühlkreisläufe im Erdgeschoss umgeschaltet.

Bei Bedarf und ausreichender Kühlleistung der Erdsonden kann auch ein Parallelbetrieb von Erd- und Obergeschoss erfolgen.

Abbildung 18: Schematische Darstellung des gesamten hydraulischen Kreislaufes mit Erdsonden und Kühlflächen [fbta]

Freie Nachtlüftung

Ergänzend zur hydraulischen Abfuhr der Wärme aus den Speichermassen wurde eine freie Nachtlüftung vorgesehen. Dafür wurden durch die im Rahmen der Sanierung realisierte Öffnung der Grundrisse die entsprechenden (Strömungs-) Voraussetzungen für einen freien Auftrieb geschaffen. Zudem wurden im unteren und oberen Fassadenbereich Fassadenöffnungen für die freie Nachtlüftung in Form von Lamellenfenstern integriert (siehe Abbildung 19). Über die automatische Regelung der Fassadenöffnungen wird der Sommer- und Winterfall getrennt berücksichtigt.

Lüftungskonzept

Im Rahmen der Sanierung wurde entschieden, eine mechanische Lüftungsanlage in den Flachbau einzubauen. Damit sollte die Luftqualität verbessert werden, die durch die Geräte des Druckereibetriebs (Hochleistungskopierer, Plotter etc.) stark beeinträchtigt wird.
Mit der Lüftungsanlage soll eine gleichmäßige Belüftung der Räume über Mischlüftung gewährleistet werden. Die Zuluft wird dezentral in den einzelnen Zonen zugeführt und die Abluft zentral im Hochpunkt des Gebäudes abgeführt (siehe Abbildung 20). Das reduziert die Lüftungswege und den Installationsaufwand.

Abbildung 19: NW-Fassade des sanierten Flachbaus [patrick beuchert]. Im Erdgeschoss und im obersten Geschoss sind die Öffnungen (Lamellenfenster) zur freien Nachtlüftung erkennbar.

Abbildung 20: (Links) Die dezentral in die einzelnen Zonen geführten Zuluftkanäle im sanierten Flachbau. (Rechts) Der zentral im Hochpunkt des Gebäudes angebrachte Abluftkanal. [fbta]
Abbildung 21: Schematisierte Darstellung der in den Flachbau neu eingebauten Lüftungsanlage [fbta]
MONITORING

Abbildung 23: Schematische Darstellung der Messpunkte zur Erfassung der Energieströme für (oben) Heizen, Warmwasser und Lüftung sowie (unten) Kühlen in der Druckerei E&B [fbta]
Datenerfassung und -verarbeitung

In der Druckerei E&B sorgt eine Gebäudeleittechnik (GLT) für die Steuerung und Regelung der beschriebenen technischen Anlagen. Da die GLT selbst keine Daten speichert, müssen die Messdaten der ausgewählten Sensoren aus der GLT ausgelesen und extern aufgezeichnet werden.

Zur messtechnischen Erweiterung der Gebäudeleittechnik wurden im Jahr 2007 folgende Zähler in die bereits Ende 2006 projektierte Messtechnik eingebaut:

- 6 Kältemengenzähler
- 7 Wärmemengenzähler
- 8 Stromzähler

Für Komfortuntersuchungen wurden vom Fraunhofer ISE zusätzlich folgende Sensoren eingebaut:

- Temperaturfühler für die Temperaturschichtung im Raum
- Fühler für die operative Raumtemperatur
- Wärmestromplatten an zwei Kühlelementen
- Fühler für die relative Raumfeuchte

Zum Transfer der Messdaten zum Fachgebiet Bauphysik und Technischen Ausbau (fbta) der Universität Karlsruhe werden täglich um 2 Uhr die intern in den Datenbanken der beiden Rechner gespeicherten Messdaten mittels vorprogrammierten Skripten aus den Datenbanken extrahiert, in 5 Textdateien geschrieben, diese Textdateien in 2 Dateien komprimiert und diese über einen ISDN-Router zum fbta gesendet.

Der ISDN-Router bietet die Möglichkeit, die beiden Institutsrechner als ein internes Netzwerk innerhalb der Druckerei E&B mit dem Internet zu verbinden, ohne dass einer von ihnen mit Modem oder ISDN-Karte ausgestattet werden musste. Die Schnittstelle zum Telefonnetz stellt der Router zur Verfügung. In dieser Funktion nimmt er alle Datenpakete aus dem internen Netz an, die an ein bestimmtes Ziel, in diesem Fall das fbta, gerichtet sind. Besteht noch keine Verbindung, wählt der Router den Provider an, übergibt automatisch Benutzername und Passwort und reicht nach der erfolgreichen Aktivierung der Verbindung das Datenpaket zum Transport an den Provider weiter, von wo es ins In-

Abbildung 24: Schematische Vorgehensweise zur Erfassung und Weiterleitung der Messdaten von der Druckerei Engelhardt & Bauer zum Fachgebiet Bauphysik und Technischen Ausbau an der Universität Karlsruhe [fbta]

Datenausfälle

Im Jahr 2007 wurden diverse Datenausfälle bzw. -lücken in Folge unterschiedlicher Störungen registriert:

- Die Batterie der Wetterstation war erschöpft.
- Access-Datenbankdateien wurden zu groß, so dass keine weiteren Daten gespeichert werden konnten.
- Der OPC-Server lieferte keine regelmäßigen Daten (z.B. fehlende Zeitangaben) bis hin zu einem
- Stromausfall in der gesamten Stadt Karlsruhe

Um die Ursachen systematisch zu erfassen und beheben zu können, wurden alle Störfälle und ihre Fehlerquellen protokolliert. Demnach können die Fehlerquellen grob vier Systemen zugeordnet werden:

1. OPC-System
2. M-Bus-System
3. Wetterstationsgerät und
4. Router bzw. Netzwerk

1. Messsensorik
2. Messsteuerung
3. Datensicherung
4. Datentransfer
5. Datenaufbereitung

Da die Ausfälle beim M-Bus-System größtenteils auf die Access-Datenbank zurückzuführen sind, liegt es nahe, dass eine stablere Datenbank zur Sicherstellung der Daten geeigneter gewesen wäre. Auf der Seite des OPC-Servers muss eher festgestellt werden, dass dieser selbst die Datenlücken hervorrief, da er die Daten nicht wie vorgesehen zur Verfügung stellte. Lücken beim Datentransfer sind auf Ausfälle des Routers zurückzuführen.

Abbildung 25: Qualitative Auswertung der Störfälle in Bezug auf Fehlerquellen sowie auf einzelne Ebenen der Datenerfassung und -weiterleitung im Jahr 2008 [fbta]
Abbildung 26: Detaillierte Darstellung der Sensorausfälle bei E&B (oben) auf der Sensorebene, (unten) auf der Systemebene [fbta]
Obwohl die Anzahl der Störungen bei dem M-Bus-System nach Abbildung 25 höher ausfällt, zeigt eine detaillierte Betrachtung der Daten auf der Sensorebene, dass die Datenlücken eher als Folge der Datenbereitstellung durch das OPC-System verursacht wurden sind (siehe Abbildung 26).
ERGEBNISSE DES MONITORINGS

Gesamtenergiekennwerte

Die in Abbildung 27 dargestellten absoluten Energieverbräuche werden in den nächsten Abschnitten in Form von spezifischen Energiekennwerten weiter diskutiert. Zudem können die Energieflossdiagramme in einem besser lesbaren Format aus Anhang B entnommen werden.

Spezifischer Endenergieverbrauch

Durch die Sanierung ist es jedoch gelungen, den Heizwärmeverbrauch des Gebäudes um rund 61% von 160 auf 98 kWh/(m²a) im Jahr 2008 zu senken. Im Jahr 2008 belief sich der Anteil der Hilfsenergie (Pumpenstrom) für Heizen auf 1,4 kWh/(m²a), entsprechend 1% des gesamten Endenergieverbrauchs), und der für Kühlen auf 5,85 kWh/(m²a), etwa 4% des gesamten Endenergieverbrauchs).

Spezifischer Primärenergieverbrauch

Bei der Kältbereitstellung fällt zunächst auf, dass im Jahr 2007 das Verhältnis zwischen Nutz- und Primärenergie trotz natürlicher Wärmesenke kleiner als 1 ist. In 2008 hat sich die regenerative Kältbereitstellung gegenüber dem Vorjahr um 50% erhöht und das Verhältnis zwischen Nutz- und Primärenergie beträgt nun 1,1.
Anhand der Gesamtenergieverbräuche kann gefolgt werden, dass im Projektverlauf Veränderungen im Betrieb der einzelnen technischen Anlagen vorgenommen wurden, die sich im verbesserten Verhältnis zwischen Nutz- und Endenergie widerspiegeln. Eine weitergehende detaillierte Beschreibung und Beurteilung der einzelnen technischen Gewerken ist Bestandteil der folgenden Abschnitte und des Berichts des Fraunhofer ISE.

Heizung

Abbildung 31 zeigt exemplarisch die prozentuale Häufigkeitsverteilung der Raumtemperaturen des sanierten Gebäudes im Jahr 2008. Dargestellt sind Stundenmittelwerte aus sechs Bereichen des Gebäudes für die Monate Januar bis März sowie Oktober bis Dezember, wobei hierfür die Nächte sowie Wochenenden mit berücksichtigt wurden (24 Stunden am Tag und sieben Tage pro Woche).

Abbildung 31: Prozentuale Häufigkeitsverteilung der Raumtemperaturen für die kalten Monate (Januar bis März sowie Oktober bis Dezember) des Jahres 2008 in der Druckerei E&B [fbta]

Die Häufigkeitslinie der Raumtemperatur im Obergeschoss läuft eng zusammen mit der Häufigkeitslinie der durchschnittlichen Raumtemperatur des Gebäudes, wobei hier – selbst in den kalten Monaten! – vereinzelt Temperaturen bis zu 32 °C aufgetreten sind. Ca. 90% der Werte für die Durchschnittstemperatur des Gebäudes liegen zwischen 21 bis 23 °C.

Die Wärmebereitstellung des Gaskessels (vgl. auch Abbildung 23) für die gesamte Liegenschaft (dreigeschossiger Verwaltungsbauproduktionshallen sowie sanieter Flach-
bau) betrug im Jahr 2008 rund 279 MWh bei einem Aufwand für Erdgas von etwa 343 MWh. Daraus ergibt sich ein Jahresnutzungsgrad des Kessels von 0,81. Dieser im Vergleich zu modernen Heizkesseln deutlich geringere Jahresnutzungsgrad unterstützt die ursprüngliche Absicht, den Gaskessel gegen eine Wärmepumpe auszutauschen.

Zum anderen kann man erkennen, dass die Hälfte der Heizwärme für die Heizkörper im Obergeschoss benötigt wurde. Aufgrund des deutlich schlechteren Wärmerückgewinnungsgrades der Lüftungsanlage (60% anstelle von geplanten 85%) werden 18% der gesamten Heizwärme für die Nachwärme der Zuluft eingesetzt. Eine weitergehende Analyse zur Heizung – insbesondere zur Hydraulik der Anlage – findet sich im Bericht des Fraunhofer ISE.

Andererseits entsteht bei Betrieb der Maschinen viel Abwärme, so dass zu diesen Zeiten kein nennenswertes Temperaturgefälle besteht. Es muss andersherum geprüft werden, ob die Abwärme nicht effizienter für Heizzwecke genutzt werden kann. Das in Abbildung 34 dargestellte Abluftrohr führt Wärme auf hohem Temperaturniveau ins Freie.

Die Raumtemperaturen im Flachbau deuten nicht auf einen erhöhten Verbrauch aufgrund sehr hoher Nutzungsanforderung hin.

Einfluss des Klimas auf die Heizwärme

Abbildung 33: Gekippte Fenster in der Produktionshalle (links), nach außen geführter Abluftkanal (Mitte), Anschluss des Abluftkanals an einen Infrarottrockner einer Druckmaschine mit Lackwerk (rechts) [fbta]

Abbildung 34: Außentemperaturverläufe gemessen an der Universität Karlsruhe und bei der Druckerei E&B sowie die Darstellung der Heiztage und Grenztemperaturen zur Berechnung und Beseitigung der klimarelevanten Einflüsse auf den Heizenergieverbrauch [fbta]
Um die Anzahl der Heiztage in Karlsruhe für das Jahr 2008 besser bildlich darstellen zu können, wurde die erste Heizperiode (Januar bis April) des Jahres auf der rechten Seite der Abbildung 34 an die zweite Heizperiode (September bis Dezember) angehängt.

Aus Abbildung 35 ergibt sich, dass von Mai bis Dezember 2008 insgesamt ein nur etwas höherer Heizwärmeverbrauch zu verzeichnen ist als im Jahr davor. Man erkennt weiterhin, dass sich der Anteil an Prozessabwärme um mehr als das 2,5-fache erhöht hat. Somit kann im Jahr 2008 55% der Heizwärme für die Fußbodenheizung im EG über Prozessabwärme bereitgestellt werden, im Vergleich zu nur 20% im Jahr davor. Ihr Anteil bleibt insgesamt jedoch weiterhin deutlich zu gering.

Abbildung 35: Klimabereinigte spezifische Endenergiekennwerte Wärme für die Monate Mai bis Dezember 2007 und 2008
Kühlung

Die bereitgestellte thermische Energie durch die Erdsonden betrug in den Monaten Juli bis September 2007 13,6 MWh und im Jahr 2008 13,0 MWh für den gleichen Zeitraum (eine kontinuierliche Messwerterfassung für die Kühlung erfolgte erst ab Juli 2007). Die geringen Arbeitszahlen deuten darauf hin, dass das System nicht sehr leistungsfähig ist. Die Effizienz des Systems verbesserte sich im Jahr 2008 geringfügig von 3,8 auf 4,6 (Mittelwert für den o. g. Zeitraum).

Auffällig ist außerdem der Betrieb des Kältekreislaufes in den Übergangszeiten und zum Teil sogar im Winter, wobei hier Heizen und Kühlen gemeinsam vorkommen. Abbildung 38 deutet auf eine nicht optimal eingestellte Regelung der betroffenen Anlagen hin.
Abbildung 36: Die monatliche Kältebereitstellung des Erdsondenfeldes (oben) für das Jahr 2007 und (unten) für das Jahr 2008 [fbta]

Zusätzlich zur Kühlung mithilfe der aktivierten Bauteile und des Erdreichs war eine freie Nachtlüftung in dem Gebäude vorgesehen. Abbildung 39 zeigt das Potenzial für die Nachtlüftung, das sich aus den Klimadaten des Standortes ergibt. Die Messdaten weisen für das Jahr 2008 ausreichende Temperaturdifferenzen zwischen Tag und Nacht - insbesondere bei höheren Tagesaußentemperaturen – auf. Allerdings muss berücksichtigt wer-
den, dass durch den teilweisen Dreischichtbetrieb im Gebäude u. U. Diskomfort durch kühlle Zugluft in den Nachtstunden entstehen kann, was die Nutzer ggf. dazu veranlasst, die Fenster zu schließen.

Abbildung 38: Gesamter Energieverbrauch zum Heizen und Kühlen des sanierten Bürogebäudes in der Zeit vom Mai 2007 bis zum Dezember 2008 (inkl. Luftvorwärmung und Hilfsenergie) [fbta]

Abbildung 39: Gemessene Stundenmittelwerte der Außentemperatur sortiert nach 8 bis 18 Uhr als Tagesstunden sowie nach 0 bis 6 Uhr als Nachtstunden im Jahr 2008) [fbta]
Lüftung

Im Rahmen der energetischen Sanierung des Flachbaus der Druckerei E&B wurde eine Zu- und Abluftanlage mit Wärmerückgewinnung eingebaut. Dies war erforderlich, um in dem Gebäude eine Mindestluftwechselrate zur Erhöhung der durch die Druckgeräte beeinträchtigten Luftqualität zu gewährleisten. Über die Wärmerückgewinnung sollte die im Betrieb entstehende Abwärme der Hochleistungsgräte zur Zuluftvorwärmung herangezogen werden. Darüber hinaus sollten die Mitarbeiter auch die Möglichkeit haben, ihre individuellen Bedürfnisse an Frischluft durch Fensteröffnung zu regeln.

Die Sozialräume werden getrennt von den Büroräumen mit einer eigenen Lüftungsanlage mit Frischluft versorgt. Laut Protokoll vom 26.01.2006 ist die Anlage für die Büroräume auf einen Volumenstrom von 2400 m³/h eingestellt, wobei sie bis zu 4000 m³/h fördern kann. Die Anlage der Sozialräume hingegen kann maximal 2500 m³/h Luft fördern und sie wurde auf einem Volumenstrom von 1800 m³/h eingestellt. Beide Anlagen sind mit einer Wärmerückgewinnung ausgestattet, wobei der deutlich zu niedrige Wärmerückgewinnungsgrad eine Nachrüstung der Anlagen mit Nachheizregistern erforderlich machte (vgl. Kapitel Heizung).

Abbildung 40 veranschaulicht die Luftvolumenströme der Lüftungsanlage für die Büroräume in der Zeit zwischen Mai 2008 bis Februar 2009 in Form eines Carpet-Plots (Auftragung der Tagesstunden über die Tage eines Jahres). Man erkennt, dass die Anlage im Prinzip durchgängig von morgens 6 Uhr bis 24 Uhr betrieben wird. Nur an Wochenenden schaltet sie sich um 18 Uhr ab. Die Höhe des Volumenstroms kann anhand der Farbskala abgelesen werden. Die nicht farbigen Lücken sind auf nicht bereitgestellte Messdaten des OPC-Servers zurückzuführen.

Weiterhin fällt auf, dass sich der Stromverbrauch für die Lüftung über sämtliche Monate der beiden Jahre kaum verändert. Dies steht im Widerspruch zu den in Abbildung 41 dargestellten saisonal unterschiedlichen Luftvolumenströmen. Hier besteht ebenfalls die Möglichkeit zur Optimierung, in dem im Sommerhalbjahr der Betrieb der Lüftungsanlage zugunsten einer konsequenten Fenster- und Nachtlüftung reduziert wird.
Abbildung 41: Spezifischer Endenergiekennwert Lüftung (oben) für die Monate Mai bis Dezember 2007 sowie (unten) für das gesamte Jahr 2008 [fbta]
Beleuchtung

Zur Erfassung des Stromverbrauchs für die Beleuchtung wurden zwei Zähler installiert, die den Verbrauch für das Erd- und Obergeschoss des sanierten Bürogebäudes getrennt aufnehmen.

![Abbildung 42: Tagesmittel der elektrischen Leistungsaufnahme für die Beleuchtung im Verhältnis zum Tageslichtangebot im Jahr 2008 für das sanierte Bürogebäude der Druckerei E&B (fbta)](image-url)

Das kann zum einen mit anspruchsvollen Schaufgaben und damit erhöhter erforderlicher Beleuchtungsstärke zusammenhängen, zum anderen mit baulichen Maßnahmen, die das Tageslichtangebot mindern (transluzente Trennwand zum Großraumbüro im EG, Abbil-
Andererseits ist sicherlich auch das Nutzerverhalten ganz entscheidend: insbesondere im Großraumbüro des Obergeschosses mit eigentlich hohem Tageslichtangebot herrscht eine geringere Verantwortung des einzelnen für energetische Belange. An dieser Stelle wäre eine tageslichtabhängige Regelung der Beleuchtung angebracht.

Abbildung 43: (Links) Empfangshalle mit einem Hochleistungs-Printer im Hintergrund. (Rechts) das Großraumbüro mit transluzenter Trennwand. Beide Räume befinden sich im Erdgeschoss. [fbta]

Abbildung 44: (Links) Großraumbüro im Obergeschoss. (Rechts) Empfangshalle im Erdgeschoss mit dem Blick auf die Leuchten des Großraumbüros im Obergeschoss. Trotz des ausreichenden Tageslichtangebots sind alle Lampen auf beiden Etagen eingeschaltet. [fbta]

Abbildung 45 fasst die spezifischen Endenergiekennwerte für den Beleuchtungsstrom im Erd- und Obergeschosses zusammen. Auch hier ist noch mal ersichtlich, dass der Ener-
giebedarf im EG unabhängig von der Jahreszeit ist, während im OG eine leichte Abhängigkeit zu erkennen ist.

![Diagram](image_url)

Abbildung 45: Spezifischer Endenergiekennwert für Beleuchtungsstrom (oben) für die Monate Mai bis Dezember 2007 und (unten) das Jahr 2008 [fbta]
Nutzerzufriedenheit und thermischer Komfort

(Autorin Karin Schakib, fbta)

An der ersten Befragung im Winter nahmen 40 Personen teil, darunter 24 Personen aus dem sanierten Flachbau und 16 Personen aus dem Altbau. Im Sommer füllten 16 Personen aus dem sanierten Flachbau den Fragebogen aus und 5 Personen aus dem Altbau.

Ergänzend zum Fragebogen wurden mit dem Einverständnis der jeweiligen Mitarbeiterinnen und Mitarbeiter in exemplarischen Büros Messgeräte zur Aufzeichnung von Temperatur und Luftfeuchtigkeit für die Dauer des Befragungstages ausgelegt. Die Auswahlkriterien für die Räume waren Geschoss, Himmelsrichtung und Bürotyp.

Die folgende Tabelle gibt einen Überblick über die Messwerte:

Tagesmittelwerte (ca. 9.00h bis ca. 15.30h) für Messungen in repräsentativen Büroebenen des sanierten Flachbaus

<table>
<thead>
<tr>
<th>Messwerte (Tagesmittel)</th>
<th>- Winter - 04.03.2008</th>
<th>- Sommer - 10.09.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur (°C)</td>
<td>Luftfeuchte (% rel. Luftfeuchte)</td>
<td>Temperatur (°C)</td>
</tr>
<tr>
<td>Neubau EG</td>
<td>20,8°C - 24,7°C</td>
<td>25% - 32%</td>
</tr>
<tr>
<td>Neubau 1.OG</td>
<td>21,8°C - 23,4°C</td>
<td>25% - 29%</td>
</tr>
<tr>
<td>Altbau 1.OG</td>
<td>21,7°C - 23,5°C</td>
<td>29% - 38%</td>
</tr>
</tbody>
</table>

Im Tagesmittel lagen die gemessenen Raum(luft)temperaturen im Rahmen des empfohlenen Spektrums von 20°C und 26°C. Dabei ist allerdings zu berücksichtigen, dass es sich bei dem Befragungstag im September nicht um einen heißen Tag handelte, so dass im Sommer höhere Temperaturen in den Räumen vermutet werden (siehe Abbildung 54).
Die Luftfeuchtigkeit lag im Winter überwiegend unter den empfohlenen Werten von 30%.

Aus der Zusammenführung von gemessenen Daten und subjektiver Bewertung ergeben sich gebäudeübergreifend im Laufe der EnOB-Begleitforschung wichtige Informationen zu einzelnen Zufriedenheitsparametern sowie zu deren Zusammenhang mit der Gesamtzufriedenheit.

Ergebnisse der Nutzerbefragung

Die nachfolgenden Darstellungen beziehen sich auf die Auswertungen der Komfortbereiche Temperatur, Lichtverhältnisse, Luftqualität, räumliche Arbeitsplatzbedingungen sowie die Bewertung der Nutzerzufriedenheit mit dem Gebäude insgesamt. Für die Interpretation der Ergebnisse ist zu berücksichtigen, dass es sich nur um wenige Personen handelt, vor allem für die Erhebungen bei der Sommerbefragung.

Temperaturverhältnisse

Die Raumtemperatur wurde sowohl im Winter als auch im Sommer tendenziell negativ bewertet: Im Winter empfanden die Mitarbeiterinnen und Mitarbeiter die Temperaturverhältnisse eher nicht ausreichend warm, im Sommer wird es zu warm. Vor allem die Personen im sanierten Flachbau bemängeln insgesamt die geringe Einflussmöglichkeit auf die Temperaturen im Winter (siehe Abbildung 46).

![Abbildung 46: Zufriedenheit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) mit den technischen Möglichkeiten, die Temperatur am Arbeitsplatz zu beeinflussen (Ergebnis Winterbefragung) [fbta]](image-url)
Aufgrund der offenen Raumstruktur im Neubau entstehen durch geöffnete Fenster im OG und teilweise auch durch die offene Eingangstür z. T. starke Zugerscheinungen im EG, die von einzelnen Mitarbeiterinnen und Mitarbeitern als sehr unangenehm erlebt wurden, die Raumtemperatur wurde dadurch als kühl bzw. kalt empfunden.

(59a_2) Für wie veränderungsbedürftig halten Sie die Temperaturverhältnisse an Ihrem Arbeitsplatz?

<table>
<thead>
<tr>
<th>Bedarf</th>
<th>Neubau</th>
<th>Altbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein/keiner Bedarf</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>kaum Bedarf</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>weder/noch</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>hoher Bedarf</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>extrem hoher Bedarf</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Abbildung 47: Veränderungsbedarf der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Temperaturverhältnisse (Ergebnis Winterbefragung) [fbta]

Lichtverhältnisse

Die Lichtverhältnisse (Tageslicht und Kunstlicht) wurden insgesamt eher positiv bewertet. Vor allem im Winter zeigte sich Zufriedenheit mit den Kunstlichtverhältnissen bei der Arbeit am PC (siehe Abbildung 48).

Für den Sonnen- und Blendschutz zeigte sich ein unentschiedenes Bild: Manche Personen äußerten sich positiv, ein ähnlich großer Anteil war jedoch unzufrieden bzw. sehr unzufrieden mit der Situation. Die Lichtverhältnisse im Raum im Winter wurden bei herabgesetztem Sonnenschutz von einigen Nutzerinnen und Nutzern im sanierten Flachbau als recht dunkel beschrieben.

Luftqualität

Die gemessene Luftfeuchte zeigte für die Winterbefragung recht niedrige Werte, bei einem Großteil der Mitarbeiter zeigte sich allerdings kein Veränderungsbedarf. Im Verhältnis äußerten mehr Personen im Altbau den Wunsch nach feuchterer Luft (Abbildung 49.).
Abbildung 48: Zufriedenheit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) mit den Kunstlichtverhältnissen am Arbeitsplatz (Ergebnis Winterbefragung) [fbta]

Abbildung 49: Präferenz der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Luftfeuchtigkeit am Arbeitsplatz (Ergebnis Winterbefragung) [fbta]
Bezüglich der Luftqualität insgesamt zeigte sich im Sommer für den sanierten Flachbau eine sehr ausbalancierte Verteilung der positiven, neutralen und negativen Bewertungen (siehe Abbildung 50).

Abbildung 50: Befindlichkeit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Luftqualität am Arbeitsplatz (Ergebnis Sommerbefragung) [fbta]

Möblierung / Gestaltung und räumliche Bedingungen

Die Mitarbeiterinnen und Mitarbeiter sahen sich durch die Möblierung und Gestaltung der Büros in ihrer Arbeitseffektivität gefördert (siehe Abbildung 51). Insgesamt wurden die räumlichen Arbeitsplatzbedingungen (z. B. Raumgröße oder Möglichkeit, den Arbeitsplatz individuell zu gestalten) im sanierten Flachbau neutral bzw. positiv bewertet (siehe Abbildung 52). Einige Mitarbeiterinnen und Mitarbeiter sowohl im sanierten Flachbau als auch im Altbau bewerteten die Arbeitsplatzbedingungen als hinderlich für ihre Arbeitseffektivität: Vor allem die Aspekte „Privatheit“ und „ungestörtes Arbeiten“ wiesen eher negative Urteile auf.

Nutzerfreundlichkeit des Gebäudes

Insgesamt zeigten sich die Mitarbeiterinnen und Mitarbeiter zufrieden mit dem Gebäude (siehe Abbildung 53). In diese abschließende Frage zum Gebäude fließen Bewertungen zu Funktionsräumen (sanitäre Anlagen, Besprechungsräume, Sozialräume), Wartung des Gebäudes, Reinigungsdienste, Sicherheitsaspekte (z. B. baulich-technisch) und die Ästhetik des Gebäudes ein.
(57) Unterstützung der Arbeitseffektivität durch die Möblierung/ Gestaltung am Arbeitsplatz (alles in allem)

Abbildung 51: Beurteilung der Möblierung durch die befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Unterstützung der Arbeitseffektivität [fbta]

(15) Unterstützung der Arbeitseffektivität durch die Art des Arbeitsplatzes und seine räumlichen Bedingungen (alles in allem)

Abbildung 52: Beurteilung des Arbeitsplatzes durch die befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Unterstützung der Arbeitseffektivität [fbta]
Gesamtzufriedenheit in Bezug auf die Nutzerfreundlichkeit des Gebäudes

<table>
<thead>
<tr>
<th>Zustand</th>
<th>Anzahl der Nennungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>zufrieden</td>
<td>15</td>
</tr>
<tr>
<td>sehr zufrieden</td>
<td>1</td>
</tr>
<tr>
<td>weder zufrieden noch</td>
<td>0</td>
</tr>
<tr>
<td>noch zufrieden</td>
<td>1</td>
</tr>
<tr>
<td>unzufrieden</td>
<td>2</td>
</tr>
</tbody>
</table>

Thermischer Komfort

Mithilfe der gemessenen Raumtemperaturen lässt sich ermitteln, inwieweit die Vorgaben für den thermischen Komfort erfüllt wurden. Hinsichtlich der Kühlung zählt das Gebäude zu nicht mechanisch gekühlten Gebäuden, da durch die Bauteilaktivierung und das angekoppelte Erdreich im Gegensatz zu einer konventionellen Kühlung/Klimatisierung keine volle Kühlleistung im entsprechenden Auslegungsfall geboten werden kann. Außerdem besteht für die Nutzer die Möglichkeit, das Raumklima selbst (durch Öffnen der Fenster) zu beeinflussen.

Abbildung 54 zeigt Messdaten aus dem sanierten Flachbau für die Jahre 2007 und 2008. Man erkennt, dass ein großer Anteil der Raumtemperaturen außerhalb des mittleren Temperaturbandes liegt, dass der Klasse B entspricht. Es muss festgestellt werden, dass das Gebäude nur die Klasse C erreicht bzw. diese teilweise nicht erreicht. Viele Bereichsüberschreitungen treten – unabhängig von der mittleren Außentemperatur – an der unteren Temperaturgrenze auf, was auf Regelungsprobleme schließen lässt. Bei höheren mittleren Außentemperaturen (die im Messzeitraum jedoch nicht außerordentlich hoch waren) steigen die Raumtemperaturen bis 30°C. Dies zeigt, dass die Kapazität der passiven Kühlsysteme nicht ausreicht oder diese falsch betrieben werden. Weitere Aufschluss hierzu gibt der Bericht des Fraunhofer ISE.
Abbildung 54: Gemessene Raumtemperaturen für die Jahre 2007 (nicht komplett) und 2008 im Druckereigebäude E&B, dargestellt im Diagramm nach EN 15251 für das adaptive Komfortmodell [ISE]
FAZIT UND AUSBlick

Insgesamt betrachtet sind für das Gebäude durch die Sanierung deutliche Vorteile hinsichtlich Nutzung und Komfort entstanden. Die Öffnung und Erweiterung des Flachbaus hat neue attraktive Arbeitsplätze geschaffen. Dies wird durch die subjektive Einschätzung der MitarbeiterInnen von Engelhardt & Bauer weitgehend bestätigt, insbesondere was die Gesamtbewertung des Gebäudes sowie der Arbeitsplätze selbst angeht.

Hervorzuheben ist weiterhin das Engagement des Bauherrn, der die funktionalen und baulichen Änderungen mit einer deutlichen Verbesserung des energetischen Standards verbinden wollte. Die im beauftragten Energiekonzept ermittelten Kennwerte konnten jedoch nicht erreicht werden. In Abbildung 55 sind der rechnerisch ermittelte Endenergiebedarf Wärme bzw. der Primärenergiebedarf dem tatsächlichen Verbrauch (vor und nach der Sanierung) gegenüber gestellt. Während für den Endenergiekennwert Wärme eine Reduktion um deutlich über 80% angestrebt wurde (Vergleich Messwert vor der Sanierung mit berechnetem Wert nach der Sanierung), konnte nur eine Verbesserung von knapp 40% umgesetzt werden. Auf Primärenergieebene sollten 56% Reduktion erreicht werden, erreicht wurden 38%.

Die Gründe sind zum einen nicht umgesetzte Maßnahmen (z.B. Dämmstandard) aus dem geplanten Energiekonzept – hier waren u. a. auch wirtschaftliche Gründe ausschlaggebend – und zum anderen die fehlerhafte Ausführung bzw. der nicht optimale Betrieb der technischen Anlagen. Im Verhältnis zu anderen Sanierungsprojekten ist der Verbrauch noch darstellbar, insbesondere unter Berücksichtigung der speziellen Gebäudenutzung (Dreischichtbetrieb).
Abbildung 55: Gegenüberstellung der berechneten und gemessenen Endenergiekennwerte Wärme (vorherige Seite) [ISE] bzw. (oben) der Primärenergiekennwerte [fbta]

VERÖFFENTLICHUNGEN

Veröffentlichungen des fbta / mit Beteiligung von MitarbeiterInnen des fbta (weitere Veröffentlichungen zum Projekt siehe Bericht des Fraunhofer ISE):

Weiterhin wurde das Projekt in zahlreichen Vorträgen zum Forschungsprogramm EnOB-Demo vorgestellt.
ABBILDUNGSVERZEICHNIS

Abbildung 1: [Links] Anteile am Endenergieverbrauch nach Anwendungsbereichen für das Jahr 2006 in Deutschland. (Rechts) Anteil fossiler Energieträger (Gas, Öl, Kohle) zur Erzeugung der Raumwärme für das Jahr 2006 in Deutschland. [BMWi], [fbta] ... 4
Abbildung 2: Struktur des Förderkonzeptes EnOB [EnOB] ... 5
Abbildung 4: Zuordnung der Gebäudeteile anhand eines schematischen Grundrisses [ISE] 8
Abbildung 5: (Oben) Netto-Grundfläche sowie (unten) Brutto-Rauminhalt der vorhandenen Gebäudebereiche der Druckerei E&B [fbta] ... 9
Abbildung 6: (Oben) Erdgeschoss- und (unten) Obergeschoss-Grundriss der Verwaltungsgebäude der Druckerei E&B. Die rot markierten Bereiche veranschaulichen die betrachtete Systemgrenze des sanierten Flachbaus. [fbta].. 10
Abbildung 7: Energiebezug Strom und Wärme (Endenergie) für das Jahr 2004 vor der Sanierung [ISE] 11
Abbildung 8: Der angestrebte spezifische Jahresheizenergiebedarf (Endenergie) für den sanierten Flachbau der Druckerei Engelhart & Bauer [ISE] ... 12
Abbildung 10: Zusammenfassung der verwendeten Materialien und Bauteile des sanierten Anbaus sowie ihre wärmeschutztechnischen Kennwerte [E&B] ... 14
Abbildung 12: (Links) Außenansicht und (rechts) Innenansicht der Fassade des sanierten Flachbaus mit Sonnenschutz- bzw. Tageslichtlenkungsvorrichtungen [patrick beuchert] ... 15
Abbildung 14: (Links) Druckmaschinenpark im Drucksaal [fbta] und (rechts) Wärmetauscher zur Nutzung der Abwärme des Drucksaales [ISE] ... 17
Abbildung 15: Installationszone mit Verteiler- und Sammelrohr der in die EG-Decke eingepautlichen Kapillarrohrmatten (Deckenkühlung im EG) [ISE] ... 18
Abbildung 17: (Links) Erdsonden-Bohrungen entlang der West-Fassade und (rechts) Erdsonden mit Anschlussleitungen entlang der Nord-Fassade [E&B] ... 19
Abbildung 19: NW-Fassade des sanierten Flachbaus [patrick beuchert]. Im Erdgeschoss und im obersten Geschoss sind die Öffnungen (Lamellenfenster) zur freien Nachläufung erkennbar. ... 21
Abbildung 20: (Links) Die dezentral in die einzelnen Zonen geführten Zuluftkanäle im sanierten Flachbau. (Rechts) Der zentral im Hochpunkt des Gebäudes angebrachte Abluftkanal. [fbta] .. 21
Abbildung 21: Schematisierte Darstellung der in den Flachbau neu eingebauten Lüftungsanlage [fbta] 22
Abbildung 22: Schematische Darstellung der Verteilung der Messstellen im Erd- (oben, vorherige Seite), Zwischen- (Mitte, vorherige Seite) und Obergeschoss (diese Seite) des sanierten Flachbaus der Druckerei E&B [fbta] ... 24
Abbildung 24: Schematische Vorgehensweise zur Erfassung und Weiterleitung der Messdaten von der Druckerei Engelhardt & Bauer zum Fachgebiet Bauphysik und Technischen Ausbau an der Universität Karlsruhe [fbta]..27
Abbildung 25: Qualitative Auswertung der Störfälle in Bezug auf Fehlerquellen sowie auf einzelne Ebenen der Datenerfassung und -weiterleitung im Jahr 2008 [fbta] ..28
Abbildung 26: Detaillierte Darstellung der Sensoreinfälle bei E&B (oben) auf der Sensorebene, (unten) auf der Systemebene [fbta]..29
Abbildung 33: Gekippte Fenster in der Produktionshalle (links), nach außen geführter Ablufterkanal (Mitte), Anschluss des Ablufterkanals an eine Farbelektropherationsmaschine (rechts) [fbta] .. 39
Abbildung 34: Außenlufttemperaturverläufe gemessen an der Universität Karlsruhe und bei der Druckerei E&B sowie die Darstellung der Heiztage und Grenztemperaturen zur Berechnung und Beseitigung der klimarelevanten Einflüsse auf die Heizenergieverbrauch [fbta]..39
Abbildung 35: Klimabereinigte spezifische Endenergiekennwerte Wärme für die Monate Mai bis Dezember 2007 und 2008 [fbta] ..40
Abbildung 36: Die monatliche Kältebereitstellung des Erdsondenfeldes (oben) für das Jahr 2007 und (unten) für das Jahr 2008 [fbta] ..42
Abbildung 38: Gesamte Energieverbrauch zum Heizen und Kühlen des sanierten Bürogebäudes in der Zeit vom Mai 2007 bis Dezember 2008 (inkl. Luftvorwärmung und Hilfsenergie) [fbta]................................. 44
Abbildung 39: Gemessene Stundenmittelwerte der Außentemperaturen sortiert nach 8 bis 18 Uhr als Tagesstunden sowie nach 0 bis 6 Uhr als Nachstunden im Jahr 2008) [fbta] ..44
Abbildung 41: Spezifischer Endenergiekennwert Lüftung (oben) für die Monate Mai bis Dezember 2007 sowie (unten) für das gesamte Jahr 2008 [fbta]..47
Abbildung 42: Tagesmittel der elektrischen Leistungsaufnahme für die Beleuchtung im Verhältnis zum Tageslichtangebot im Jahr 2008 für das sanierte Bürogebäude der Druckerei E&B [fbta]................................. 48
Abbildung 43: (Links) Empfangshalle mit einem Hochleistungs-Printer im Hintergrund. (Rechts) das Großraumbüro mit transluzenten Trennwand. Beide Räume befinden sich im Erdgeschoss. [fbta]............. 49
Abbildung 44: (Links) Großraumbüro im Obergeschoss. (Rechts) Empfangshalle im Erdgeschoss mit dem Blick auf die Leuchten des Großraumbüros im Obergeschoss. Trotz des ausreichenden Tageslichtangebots sind alle Lampen auf beiden Etagen eingeschaltet. [fbta]..49
Abbildung 45: Spezifischer Endenergiekennwert für Beleuchtungsstrom (oben) für die Monate Mai bis Dezember 2007 und (unten) das Jahr 2008 [fbta]..50
Abbildung 46: Zufriedenheit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) mit den technischen Möglichkeiten, die Temperatur am Arbeitsplatz zu beeinflussen (Ergebnis Winterbefragung) [fbta]..52
Abbildung 47: Veränderungsbedarf der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Temperaturverhältnisse (Ergebnis Winterbefragung) [fbta]...53
Abbildung 48: Zufriedenheit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) mit den Kunstlichtverhältnissen am Arbeitsplatz (Ergebnis Winterbefragung) [fbta]..54
Abbildung 49: Präferenz der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Luftfeuchtigkeit am Arbeitsplatz (Ergebnis Winterbefragung) [fbta]...54
Abbildung 50: Befriedigung der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Luftqualität am Arbeitsplatz (Ergebnis Sommerbefragung) [fbta]..55
Abbildung 51: Beurteilung der Möblierung durch die befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Unterstützung der Arbeitseffektivität [fbta]...56
Abbildung 52: Beurteilung des Arbeitsplatzes durch die befragten Personen im Altbau und im sanierten Flachbau (=Neubau) bezüglich der Unterstützung der Arbeitseffektivität [fbta]...56
Abbildung 53: Gesamtzufriedenheit der befragten Personen im Altbau und im sanierten Flachbau (=Neubau) mit dem Gebäude [fbta]..57
Abbildung 54: Gemessene Raumtemperaturen für die Jahre 2007 (nicht komplett) und 2008 im Druckereigebäude E&B, dargestellt im Diagramm nach EN 15251 für das adaptive Komfortmodell [ISE]..58
Abbildung 55: Gegenüberstellung der berechneten und gemessenen Endenergiekennwerte Wärme (vorherige Seite) [ISE] bzw. (oben) der Primärenergiekennwerte [fbta]..60

Literaturverzeichnis

64
Anhang A: Tabellen

Die im Rahmen des Monitorings herangezogenen Sensoren in der Druckerei Engelhardt & Bauer sind nachfolgend tabellarisch aufgelistet.

<table>
<thead>
<tr>
<th>Sensor-Nr.</th>
<th>Quelle</th>
<th>Bezeichnung</th>
<th>Einheit</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Manuell</td>
<td>WMZ_K_01</td>
<td>MWh</td>
<td>Wärmemengenzähler: Erdsondenfeld Primärkreis</td>
</tr>
<tr>
<td>S2</td>
<td>M-Bus</td>
<td>WMZ_K_03_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Kühlflächen Erdgeschoss</td>
</tr>
<tr>
<td>S3</td>
<td>M-Bus</td>
<td>WMZ_K_04_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Kühlflächen OG, Empfang</td>
</tr>
<tr>
<td>S4</td>
<td>M-Bus</td>
<td>WMZ_K_05_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Kühlflächen OG, Chef</td>
</tr>
<tr>
<td>S5</td>
<td>M-Bus</td>
<td>WMZ_K_06_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Kühlflächen OG, Büro</td>
</tr>
<tr>
<td>S6</td>
<td>M-Bus</td>
<td>WMZ_K_07_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: einzelnes PCM-Element</td>
</tr>
<tr>
<td>S7</td>
<td>M-Bus</td>
<td>WMZ_K_08_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: PCM Gruppe</td>
</tr>
<tr>
<td>S8</td>
<td>M-Bus</td>
<td>WMZ_H_01_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: ges. Wärmeabgabe Kessel</td>
</tr>
<tr>
<td>S9</td>
<td>M-Bus</td>
<td>WMZ_H_03_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Wärme Heizkörper EG</td>
</tr>
<tr>
<td>S10</td>
<td>M-Bus</td>
<td>WMZ_H_04_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Wärme Heizkörper OG</td>
</tr>
<tr>
<td>S11</td>
<td>M-Bus</td>
<td>WMZ_H_05_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Wärme Fußbodenheizung</td>
</tr>
<tr>
<td>S12</td>
<td>M-Bus</td>
<td>WMZ_H_06_E</td>
<td>MWh</td>
<td>Wärmemengenzähler: Wärme aus Produktion an FBH</td>
</tr>
<tr>
<td>S13</td>
<td>M-Bus</td>
<td>WMZ_H_07_E</td>
<td>MWh</td>
<td>WMZ: Wärme Nachheizregister Lüftung Sozialräume</td>
</tr>
<tr>
<td>S14</td>
<td>M-Bus</td>
<td>WMZ_H_08_E</td>
<td>MWh</td>
<td>WMZ: Wärme Nachheizregister Lüftung Büros</td>
</tr>
<tr>
<td>S15</td>
<td>M-Bus</td>
<td>SZ_01_E</td>
<td>kWh</td>
<td>Stromzähler: Pumpe Kühlung Zählerstand</td>
</tr>
<tr>
<td>S16</td>
<td>M-Bus</td>
<td>SZ_02_E</td>
<td>kWh</td>
<td>Stromzähler: Pumpe Heizung Neubau Zählerstand</td>
</tr>
<tr>
<td>S17</td>
<td>M-Bus</td>
<td>SZ_03_E</td>
<td>kWh</td>
<td>Stromzähler: Lüftungsanlage 2, Büroräume, Zuluft</td>
</tr>
<tr>
<td>S19</td>
<td>M-Bus</td>
<td>SZ_05_E</td>
<td>kWh</td>
<td>Stromzähler: Beleuchtung Büros EG</td>
</tr>
<tr>
<td>S20</td>
<td>M-Bus</td>
<td>SZ_06_E</td>
<td>kWh</td>
<td>Stromzähler: Beleuchtung Büros OG</td>
</tr>
<tr>
<td>S21</td>
<td>M-Bus</td>
<td>SZ_07_E</td>
<td>kWh</td>
<td>Stromzähler: Schaltschrank Lüftung</td>
</tr>
<tr>
<td>S22</td>
<td>M-Bus</td>
<td>SZ_08_E</td>
<td>kWh</td>
<td>Stromzähler: Pumpe Fußbodenheizung</td>
</tr>
<tr>
<td>S23</td>
<td>OPC</td>
<td>T_RLT_B_AU</td>
<td>° C</td>
<td>Außenlufttemperatur Nordwand</td>
</tr>
<tr>
<td>S24</td>
<td>OPC</td>
<td>T_RLT_B_ZU_WRG</td>
<td>° C</td>
<td>Außentemperatur RLT 02 vor WRG Büros T2</td>
</tr>
<tr>
<td>S25</td>
<td>OPC</td>
<td>T_RLT_B_ZU</td>
<td>° C</td>
<td>Zulufttemperatur RLT 02, Büros</td>
</tr>
<tr>
<td>S26</td>
<td>OPC</td>
<td>T_RLT_B_AB</td>
<td>° C</td>
<td>Ablufttemperatur RLT 02, Büros</td>
</tr>
<tr>
<td>S27</td>
<td>OPC</td>
<td>T_RLT_B_FO</td>
<td>° C</td>
<td>Fortlufttemperatur RLT 02, Büros</td>
</tr>
<tr>
<td>S28</td>
<td>OPC</td>
<td>T_OP</td>
<td>° C</td>
<td>Raumpendelfühler</td>
</tr>
<tr>
<td>S29</td>
<td>OPC</td>
<td>T_F1</td>
<td>° C</td>
<td>Temperatur PCM-Element 1</td>
</tr>
<tr>
<td>S30</td>
<td>OPC</td>
<td>T_F2</td>
<td>° C</td>
<td>Temperatur PCM-Element 2</td>
</tr>
<tr>
<td>S31</td>
<td>OPC</td>
<td>TS_01</td>
<td>° C</td>
<td>Temperaturschichtung 1</td>
</tr>
<tr>
<td>S32</td>
<td>OPC</td>
<td>TS_02</td>
<td>° C</td>
<td>Temperaturschichtung 2</td>
</tr>
<tr>
<td>S33</td>
<td>OPC</td>
<td>TS_03</td>
<td>° C</td>
<td>Temperaturschichtung 3</td>
</tr>
<tr>
<td>Sensor-Nr.</td>
<td>Quelle</td>
<td>Bezeichnung</td>
<td>Einheit</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>S36</td>
<td>OPC</td>
<td>TS_06</td>
<td>° C</td>
<td>Temperaturschichtung 6</td>
</tr>
<tr>
<td>S37</td>
<td>OPC</td>
<td>TS_07</td>
<td>° C</td>
<td>Temperaturschichtung 7</td>
</tr>
<tr>
<td>S38</td>
<td>OPC</td>
<td>T_WS_01</td>
<td>° C</td>
<td>Temperatur zu Wärmestromplatte 1</td>
</tr>
<tr>
<td>S39</td>
<td>OPC</td>
<td>T_WS_02</td>
<td>° C</td>
<td>Temperatur zu Wärmestromplatte 2</td>
</tr>
<tr>
<td>S40</td>
<td>OPC</td>
<td>WS_01</td>
<td>W/m²</td>
<td>Wärmestromplatte</td>
</tr>
<tr>
<td>S41</td>
<td>OPC</td>
<td>WS_02</td>
<td>W/m²</td>
<td>Wärmestromplatte</td>
</tr>
<tr>
<td>S42</td>
<td>OPC</td>
<td>RF</td>
<td>%</td>
<td>Raumfeuchte</td>
</tr>
<tr>
<td>S43</td>
<td>OPC</td>
<td>T_RF</td>
<td>° C</td>
<td>Temperatur zur Raumfeuchte</td>
</tr>
<tr>
<td>S44</td>
<td>OPC</td>
<td>T_RLT_B_NE_VL</td>
<td>° C</td>
<td>Vorlauftemperatur Nacherhitzer RLT Büro</td>
</tr>
<tr>
<td>S45</td>
<td>OPC</td>
<td>T_RLT_B_NE_RL</td>
<td>° C</td>
<td>Rücklauftemperatur Nacherhitzer RLT Büro</td>
</tr>
<tr>
<td>S46</td>
<td>OPC</td>
<td>T_RLT_S_NE_VL</td>
<td>° C</td>
<td>Vorlauftemperatur Nacherhitzer RLT Sozialräume</td>
</tr>
<tr>
<td>S47</td>
<td>OPC</td>
<td>T_RLT_S_NE_RL</td>
<td>° C</td>
<td>Rücklauftemperatur Nacherhitzer RLT Sozialräume</td>
</tr>
<tr>
<td>S48</td>
<td>OPC</td>
<td>BM_RLT_B_VE_ZU</td>
<td>0/1</td>
<td>Zuluftventilator RLT Büro</td>
</tr>
<tr>
<td>S50</td>
<td>OPC</td>
<td>SB_RLT_S_VE_ZU</td>
<td>0/1</td>
<td>Zuluftventilator RLT Sozialräume</td>
</tr>
<tr>
<td>S51</td>
<td>OPC</td>
<td>SB_RLT_S_VE_AB</td>
<td>0/1</td>
<td>Abluftventilator RLT Sozialräume</td>
</tr>
<tr>
<td>S52</td>
<td>OPC</td>
<td>SB_PU KE</td>
<td>0/1</td>
<td>Kesselpumpe</td>
</tr>
<tr>
<td>S53</td>
<td>OPC</td>
<td>SB KE</td>
<td>0/1</td>
<td>Kesselanforderung</td>
</tr>
<tr>
<td>S54</td>
<td>OPC</td>
<td>BM PU FB</td>
<td>0/1</td>
<td>Pumpe Fußbodenheizung</td>
</tr>
<tr>
<td>S55</td>
<td>OPC</td>
<td>BM PU KW</td>
<td>0/1</td>
<td>Pumpe Kühlung</td>
</tr>
<tr>
<td>S56</td>
<td>OPC</td>
<td>M_SS EG AB</td>
<td>0/1</td>
<td>Sonnenschutz EG Ab</td>
</tr>
<tr>
<td>S57</td>
<td>OPC</td>
<td>M_SS EG AUF</td>
<td>0/1</td>
<td>Sonnenschutz EG Auf</td>
</tr>
<tr>
<td>S58</td>
<td>OPC</td>
<td>M RE N</td>
<td>0/1</td>
<td>kein Regen</td>
</tr>
<tr>
<td>S59</td>
<td>OPC</td>
<td>M RE J</td>
<td>0/1</td>
<td>Regen</td>
</tr>
<tr>
<td>S60</td>
<td>OPC</td>
<td>T ES VL</td>
<td>° C</td>
<td>Vorlauftemperatur Erdsonden</td>
</tr>
<tr>
<td>S61</td>
<td>OPC</td>
<td>T RA EG 01</td>
<td>° C</td>
<td>Raumtemperatur EG 01</td>
</tr>
<tr>
<td>S62</td>
<td>OPC</td>
<td>T RA EG 02</td>
<td>° C</td>
<td>Raumtemperatur EG 02</td>
</tr>
<tr>
<td>S63</td>
<td>OPC</td>
<td>T RA EG 03</td>
<td>° C</td>
<td>Raumtemperatur EG 03</td>
</tr>
<tr>
<td>S64</td>
<td>OPC</td>
<td>T RA EG 04</td>
<td>° C</td>
<td>Raumtemperatur EG 04</td>
</tr>
<tr>
<td>S65</td>
<td>OPC</td>
<td>T RA EG 05</td>
<td>° C</td>
<td>Raumtemperatur EG 05</td>
</tr>
<tr>
<td>S66</td>
<td>OPC</td>
<td>T RA OG</td>
<td>° C</td>
<td>Raumtemperatur OG</td>
</tr>
<tr>
<td>S67</td>
<td>OPC</td>
<td>V dot RLT B_ZU</td>
<td>m³/h</td>
<td>Volumenstrom Zuluft</td>
</tr>
<tr>
<td>S68</td>
<td>OPC</td>
<td>V dot RLT B_AB</td>
<td>m³/h</td>
<td>Volumenstrom Abluft</td>
</tr>
<tr>
<td>Sensor-Nr.</td>
<td>Quelle</td>
<td>Bezeichnung</td>
<td>Einheit</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>S69</td>
<td>W-Station</td>
<td>T_A</td>
<td>° C</td>
<td>Außentemperatur Wetterstation</td>
</tr>
<tr>
<td>S70</td>
<td>W-Station</td>
<td>F_A</td>
<td>%</td>
<td>Außenfeuchte Wetterstation</td>
</tr>
<tr>
<td>S71</td>
<td>W-Station</td>
<td>RE_A</td>
<td>l/qm</td>
<td>Regenmenge Wetterstation</td>
</tr>
<tr>
<td>S73</td>
<td>W-Station</td>
<td>W_A</td>
<td>km/h</td>
<td>Windgeschwindigkeit Wetterstation</td>
</tr>
<tr>
<td>S74</td>
<td>W-UniKarl</td>
<td>G_A_UniKarl</td>
<td>W/m²</td>
<td>Globalstrahlung, Station Physikhochhaus</td>
</tr>
<tr>
<td>S75</td>
<td>W-UniKarl</td>
<td>T_A_UniKarl</td>
<td>° C</td>
<td>Lufttemperatur, Station Physikhochhaus</td>
</tr>
<tr>
<td>S77</td>
<td>W-UniKarl</td>
<td>F_A_UniKarl</td>
<td>%</td>
<td>Relative Feuchte, Station Physikhochhaus</td>
</tr>
</tbody>
</table>
Anhang B: Abbildungen

Energieflussdiagramm des sanierten Verwaltungsgebäudes der Druckerei E&B für das Jahr 2007 [fbta]
Energieflussdiagramm des sanierten Verwaltungsgebäudes der Druckerei E&B für das Jahr 2008 [fbta]